Get chapter-wise JEE Main & Advanced questions with solutions
Q JEE MAIN 2020
If $2^{10}+2^9 \cdot 3^1+2^8 \cdot 3^2+\ldots .+2 \cdot 3^9+3^{10}=S-2^{11}$, then $S$ is equal to:
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2020
If $3^{2 \sin 2 \alpha-1}, 14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an A.P. for some $\alpha$, then the sixth...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2019
if the sum of the first 15 terms of the series $\left(\frac{3}{4}\right)^3+\left(1 \frac{1}{2}\right)^3+\left(2 \frac{1}{4}\right)^3+3^3+\left(3 \frac{3}{4}\right)^3+\ldots$. is equal to $225 k$, then $k$ is equal to...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2020
Let $a, b, c, d$ and $p$ be any non zero distinct real numbers such that $\left(a^2+b^2+c^2\right) p^2-2(a b+b c+c d) p+\left(b^2+c^2+d^2\right)=0$. Then :
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2019
If $\sin ^4 \alpha+4 \cos ^4 \beta+2=4 \sqrt{2} \sin \alpha \cos \beta ; \alpha, \beta \in[0, \pi]$, then $\cos (\alpha+\beta)-\cos (\alpha-\beta)$ is equal to
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2020
The common difference of the A.P. $b_1, b_2, \ldots, b_m$ is 2 more than the common difference of A.P. $\mathrm{a}_1, \mathrm{a}_2$, $\_\_\_\_$ an. If $...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2019
Let $\mathrm{a}, \mathrm{b}$ and c be the $7^{\text {th }}, 11^{\text {th }}$ and $13^{\text {th }}$ terms respectively of a non-constant A.P. If these...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2019
The sum of the following series
$$
1+6+\frac{9\left(1^2+2^2+3^2\right)}{7}+\frac{12\left(1^2+2^2+3^2+4^2\right)}{9}+\frac{15\left(1^2+2^2+\ldots \ldots+5^2\right.}{11}+\ldots .
$$
up to 15 terms, is
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2020
The sum $\sum_{k=1}^{20}(1+2+3+\ldots . .+k)$ is $\_\_\_\_$ .
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2019
The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is $\frac{27}{19}$. Then the...
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇