Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN_2026_
If the sum of the first four terms of an A.P. is 6 and the sum of its first six terms is 4 , then...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2026
Let $a_1, \frac{a_2}{2}, \frac{a_3}{2^2}, \ldots, \frac{a_{10}}{2^9}$ be a G.P. of common ratio $\frac{1}{\sqrt{2}}$. If $a_1+a_2+\ldots+a_{10}=62$, then $a_1$ is equal to:
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2026
The positive integer $n$, for which the solutions of the equation $x(x+2)+(x+2)(x+4)+\cdots+(x+2 n-2)(x+2 n)=\frac{8 n}{3}$ are two consecutive even integers, is :
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2026
Let $a_1=1$ and for $n \geq 1, a_{n+1}=\frac{1}{2} a_n+\frac{n^2-2 n-1}{n^2(n+1)^2}$. Then $\left|\sum_{n=1}^{\infty}\left(a_n-\frac{2}{n^2}\right)\right|$ is equal to
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2026
Let $a_1, a_2, a_3, \ldots$ be a G.P. of increasing positive terms such that $a_2 \cdot a_3 \cdot a_4=64$ and $a_1+a_3+a_5=\frac{813}{7}$. Then $a_3+a_5+a_7$ is equal...
JEE MainMathematicsEasy
View Solution →
Q_ JEE MAIN_2019_
The sum
$$
\frac{3 \times 1}{1^2}+\frac{5 \times\left(1^3+2^3\right)}{1^2+2^2}+\frac{7 \times\left(1^3+2^3+3^3\right)}{1^2+2^2+3^2}+\ldots
$$
upto $10^{\text {th }}$ term, is.
JEE MainMathematicsEasy
View Solution →
Q JEE MAIN_2019_
If $a_1, a_2, a_3, \ldots \ldots .$, an are in A.P. and $a_1+a_4+a_7+ a_{16}+a_{16}=114$, then $a_1+a_6+a_{11}+a_{16}$ is equal to:
JEE MainMathematicsMedium
View Solution →
QJEE-Advanced 2025
Let $\mathbb{R}$ denote the set of all real numbers. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x)>0$ for all $x \in \mathbb{R}$,...
JEE AdvanceMathematicsEasy
View Solution →
QJEE MAIN 2019
If $\alpha$ and $\beta$ are the roots of the equation $375 x^2-25 x-2=0$, then $\lim _{n \rightarrow \infty} \sum_{r=1}^n \alpha^r+\lim _{n \rightarrow \infty} \sum_{r=1}^n \beta^r$...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2019
If $\alpha, \beta$ and $\gamma$ are three consecutive terms of a non-constant G.P. such that the equations $\alpha x^2+2 \beta x+\gamma=0$ and $x^2$ $+x-1=0$ have...
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇