Report Issue

Vector & 3D

Get chapter-wise JEE Main & Advanced questions with solutions

Q JEE MAIN 2026
Let a line L passing through the point $\mathrm{P}(1,1,1)$ be perpendicular to the lines $\frac{x-4}{4}=\frac{y-1}{1}=\frac{z-1}{1}$ and $\frac{x-17}{1}=\frac{y-71}{1}=\frac{z}{0}$. Let the line L intersect the yz -plane...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN_2026_
Let the direction cosines of two lines satisfy the equations: $4 l+m-n=0$ and $2 m n+10 n l+3 l m=0$. Then the cosine of the...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2026
Let $\vec{a}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}, \vec{b}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ and $\vec{c}=\vec{a} \times \vec{b}$. Let $\vec{d}$ be a vector such that $|\vec{d}-\vec{a}|=\sqrt{11},|\vec{c} \times \vec{d}|=3$ and the angle between $\vec{c}$ and...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
Let the lines $\mathrm{L}_1: \vec{r}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}), \lambda \in \mathbb{R} \quad$ and $\mathrm{L}_2: \vec{r}=(4 \hat{\mathrm{i}}+\hat{\mathrm{j}})+\mu(5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}), \mu \in \mathbb{R}$, intersect at...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN_2026
The vertices $B$ and $C$ of a triangle $A B C$ lie on the line $\frac{x}{1}=\frac{1-y}{-2}=\frac{z-2}{3}$. The coordinates of $A$ and $B$ are ( $1,6,3$...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2026
Let a vector $\overrightarrow{\mathrm{a}}=\sqrt{2} \hat{i}-\hat{j}+\lambda \hat{k}, \lambda>0$, make an obtuse angle with the vector $\overrightarrow{\mathrm{b}}=-\lambda^2 \hat{i}+4 \sqrt{2} \hat{j}+4 \sqrt{2} \hat{k}$ and an angle $\theta, \frac{\pi}{6}<\theta<\frac{\pi}{2}$,...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN 2026
Let L be the line $\frac{x+1}{2}=\frac{y+1}{3}=\frac{z+3}{6}$ and let S be the set of all points $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ on L , whose distance from the...
JEE Main Mathematics Medium
View Solution →
Q JEE MAIN 2026
Let $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\lambda \hat{j}+2 \hat{k}, \lambda \in Z$ be two vectors. Let $\vec{c}=\vec{a} \times \vec{b}$ and $\vec{d}$ be a vector of magnitude 2...
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN_2026
Let $\overrightarrow{\mathrm{a}}=-\hat{i}+\hat{j}+2 \hat{k}, \overrightarrow{\mathrm{~b}}=\hat{i}-\hat{j}-3 \hat{k}, \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{d}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$. Then $(\vec{a}-\vec{b}) \cdot \vec{d}$ is equal to:
JEE Main Mathematics Easy
View Solution →
Q JEE MAIN_2026_
If the image of the point $\mathrm{P}(1,2, a)$ in the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{7-\mathrm{z}}{2}$ is $\mathrm{Q}(5, b, \mathrm{c})$, then $a^2+b^2+c^2$ is equal to
JEE Main Mathematics Easy
View Solution →