Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN 2020
If the minimum and the maximum values of the function $f: f:\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R$, defined by $$ f(\theta)=\left|\begin{array}{ccc} -\sin ^2 \theta & -1-\sin ^2...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2020
If $\alpha$ is the positive root of the equation, $p(x)=x^2-x -2=0$, then $\lim _{x \rightarrow \alpha^{+}} \frac{\sqrt{1-\cos (p(x))}}{x+\alpha-4}$ is equal to :
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2020
If the four complex numbers $z, \bar{z}, \bar{z}-2 \operatorname{Re}(\bar{z})$ and $z-2 \operatorname{Re}(z)$ represent the vertices of a square of side 4 units in the Argand...
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2020
The mean and variance of 7 observations are 8 and 16, respectively. If five observations are 2, 4, 10, 12, 14, then the absolute difference...
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2020
If $3^{2 \sin 2 \alpha-1}, 14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an A.P. for some $\alpha$, then the sixth...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN 2020
If $(a, b, c)$ is the image of the point $(1,2,-3)$ in the line, $\frac{x+1}{2}=\frac{y-2}{-2}=\frac{z}{-1}$, then $a+b+c$ is equal to :
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2020
If S is the sum of the first 10 terms of the series
$\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)+\tan ^{-1}\left(\frac{1}{21}\right)+\ldots \ldots$
then tan(S) is equal to :
JEE MainMathematicsMedium
View Solution →
Q JEE MAIN 2020
The value of $\int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\mathrm{e}^{\sin x}} \mathrm{dx}$ is:
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2020
Let $A D$ and $B C$ be two vertical poles at $A$ and $B$ respectively on a horizontal ground. If $...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN 2020
If $y=y(x)$ is the solution of the differential equation $\frac{5+\mathrm{e}^{\mathrm{x}}}{2+\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{e}^{\mathrm{x}}=0$ satisfying $\mathrm{y}(0)=1$, then a value of $y\left(\log _e 13\right)$ is :
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇