Get chapter-wise JEE Main & Advanced questions with solutions
QJEE MAIN 2019
In an experiment, brass and steel wires of length 1 m each with areas of cross section $1 \mathrm{~mm}^2$ are used. The wires are connected...
JEE MainPhysicsMedium
View Solution →
QJEE Main 2019
Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3\left|z_1\right|=4\left|z_2\right|$. If $z=\frac{3 z_1}{2 z_2}+\frac{2 z_2}{3 z_1}$ then
JEE MainMathematicsHard
View Solution →
QJEE MAIN 2026
Let A be the focus of the parabola $y^2=8 x$. Let the line $y=m x+c$ intersect the parabola at two distinct points $B$ and $C$....
JEE MainMathematicsMedium
View Solution →
QJEE MAIN_2019
$$
\text { If } \int \frac{d x}{\left(x^2-2 x+10\right)^2}=A\left(\tan ^{-1}\left(\frac{x-1}{3}\right)+\frac{f(x)}{x^2-2 x+10}\right)+C
$$
where C is a constant of integration, then :
JEE MainMathematicsEasy
View Solution →
QJEE MAIN_2019_
ABC is a triangular park with $\mathrm{AB}=\mathrm{AC}=100$ metres. A vertical tower is situated at the mid-point of $B C$. If the angles of elevation of...
JEE MainMathematicsEasy
View Solution →
QJEE MAIN_2019_
Let $f \sim R \rightarrow R$ be differentiable at $c \in R$ and $f(c)=$ 0. If $g(x)=|f(x)|$, then at $x=c, g$ is;
JEE MainMathematicsMedium
View Solution →
QJEE MAIN_2019_
If $y=y(x)$ is the solution of the differential equation $\frac{\mathrm{dt}}{\mathrm{dx}}=(\tan \mathrm{x}-\mathrm{y}) \sec ^2 \mathrm{x}, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that $\mathrm{y}(0) =0$, then $\mathrm{y}\left(-\frac{\pi}{4}\right)$ is equal...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN_2019_
If $\alpha$ and $\beta$ are the roots of the quadratic equation, $x^2+x \sin \theta-2 \sin \theta=0, \quad \theta \in\left(0, \frac{\pi}{2}\right)$, then $\frac{\alpha^{12}+\beta^{12}}{\left(a^{-12}+\beta^{-12}\right) \cdot(\alpha-\beta)^{24}}$ is equal...
JEE MainMathematicsMedium
View Solution →
QJEE MAIN_2019
Let $f(x)=e^x-x$ and $g(x)=x^2-x, \forall x \in R$. Then the set of all $x \in R$, where the function $h(x)=(\mathrm{fog}) (x)$ is increasing, is i
JEE MainMathematicsMedium
View Solution →
Q_ JEE MAIN_2019_
The sum
$$
\frac{3 \times 1}{1^2}+\frac{5 \times\left(1^3+2^3\right)}{1^2+2^2}+\frac{7 \times\left(1^3+2^3+3^3\right)}{1^2+2^2+3^2}+\ldots
$$
upto $10^{\text {th }}$ term, is.
Hello 👋 Welcome to Competishun – India’s most trusted platform for JEE & NEET preparation. Need help with JEE / NEET courses, fees, batches, test series or free study material? Chat with us now 👇